Home Nav. course Sailing Greece Turkish Coasts Yacht charter Gulets                          

Tidal movements

The tide is the vertical rise and fall of the sea level surface caused primarily by the change in gravitational attraction of the moon, and to a lesser extent the sun.
As the earth spins on its axis the centrifugal force results in slightly deeper water near the equator as opposed to shallower water at the poles. In fact it causes a flow from the poles to the equator.
The earth is also in orbit around the sun (one revolution in one year) creating not only another centrifugal force but also a gravitational interaction. These two yield a bulge on the night site (centrifugal) and a bulge on the day site (gravitational) both of them moving as the world turns. Therefore, a certain place on this world will experience two high and two low tides each day.
With these forces alone, we would not have spring tides and neap tides. Spring tides have higher high tides and lower low tides whereas neap tides have lower high tides and higher low tides. Hence, the range (difference in water level between high and low tide) is much larger in a spring tide than in a low tide.
This animation shows how the tide changes during the lunar cycle. When the sun, moon and earth are aligned : spring tide.
When at right angles the forces are not aligned:
neap tide.
The time between spring and neap is approximately 7 days.
These differences in range can be explained if we include the moon into our earth-sun system. The moon and the earth orbit each other around a point (called the barycenter or baricenter) 2000 odd kilometres inside the earth, creating a centrifugal and a gravitational bulge. Moreover, despite the sun's immensely larger mass, the moon exerts a 2.25 times larger gravi­tatio­nal attraction, since the moon is much closer to our earth.
It is the combined effect of the sun and moon that creates spring and neap tides. In the animation the gravitational forces of both the sun and the moon are taken into account. When aligned with the earth they combine their attraction and otherwise they counteract their attraction. The sun is located in the corner right below, far outside this picture (note the eclipse) while the moon is revolving round the earth. One full circle corresponds to one lunar cycle (about 28 days).

The figure below shows the ideal sinusoids of both spring and neap tides. Vertically the water height is shown versus horizontally the time. Ideally, the time between a low and a successive high is somewhat more than 6 hours.
The sinoidal curve of the Tide
The time difference between spring tide and neap tide is normally 7 days and is in accordance with the phases of the moon. Yet, water has mass and therefore momentum. Moreover, it is a viscous fluid that generates friction if moved. Therefore, the actual spring tide lags a day or so behind a full moon or new moon occurrence.

So, tidal movements are intrinsically periodical, resulting in a Tidal day of 24 hours and 50 minutes containing one tidal cycle, namely two highs and two lows. This basic pattern may be distorted by the effects of landmasses, constrained waterways, friction, the Coriolis effect, or other factors. Hence, predictions are possible and we expect the the next day's high tide to come about 50 minutes later.
However, a closer look at the orbit of the moon reveals that the moon is not always in the equatorial plane, resulting in three types of tides:

Chart Datums

   © sailingissues.com   
The depths and heights in the chart need a plane of reference: the Chart Datum (see interactive figure below). Depths are usually described with respect to low water reference planes (yielding lower charted depths, which are safer) and heights are shown with respect to high water reference planes (again, yielding lower vertical clearances on the chart, which are safer). As such, the chance that the observed depth or vertical clearance beneath a bridge is smaller than the charted depth or height is rather small.
In this example the Charted Depths are related to LAT.
The Observed Depth or Drying Height is a combination of Tidal Height & Charted Depth.
  This example shows the various spring and neap tides around mean water level. Note that spring low water is the lowest. Both ranges are indicated.  In this example the light elevation is reduced to high water. Also a clearance under a bridge is charted in that way. The 'height' refers to the building itself. On land yet another CD can be in use.

Some Chart Datums and their abbreviations:



Use the logo to navigate through this course,
...or go to the next chapter,
or download the complete navigation course as PDF PDF download -  including practice materials, exercises and answers.  


Books·charts Sitemap| A-Z Contact RSS| Charterguide PDFs
30 May 2017
    © 2000 – 2017 Diederik Willemsen | E-mail me
Site map | A-Z index | Register

 RSS XML Feed | < | Level AA conformance icon, W3C-WAI Web Content Accessibility Guidelines 1.0 | |